

CASE STUDY:

CITY OF WEST RICHLAND

50,000 GPD MEMPAC[™]-I West Richland, WA

DESIGN PARAMETERS

MODEL SUPPLIED: MEMPAC-I

INFLUENT PARAMETERS

AVERAGE DAILY FLOW

50,000 GPD

BIOCHEMICAL OXYGEN DEMAND

8,000 MG/L

TOTAL SUSPENDED SOLIDS

600 MG/L

INFLUENT TYPE

WINERY PROCESS WASTEWATER

EFFLUENT QUALITY

BIOCHEMICAL OXYGEN DEMAND

< 10 MG/L

TOTAL SUSPENDED SOLIDS

< 10 MG/L

PROJECT TEAM

CITY ENGINEER

CITY OF WEST RICHLAND

Drew Woodruff, P.E. 509.967.5434

PROJECT ENGINEER

APOLLO INC.

509.586.1104 apollo-gc.com

PROJECT MANAGER

J-U-B ENGINEERS

Alex Fazzari, P.E. 509.783.2144 • jub.com

INSTALLATION CONTRACTOR

FLUID RESOURCE MANAGEMENT

Robin Ransford 805.597.7100 • frm-ops.com

ENGINEER

WALLACE GROUP

Rob Miller 805.544.4011 • wallacegroup.us

OVERVIEW

Cloacina provided a MEMPAC-I for a planned industrial development

The Cloacina system was delivered in two treatment trains: one sludge handling train and one equalization handling system

Cloacina provided the city staff with an electronic Operations and Maintenance Manual (OMM), operator checklist, Standard Operating Procedures (SOP) and on-site training

The plant currently sends treated effluent to the city sewer system but their intent is to utilize future treated effluent for irrigation purposes

"I have and will continue to recommend Cloacina to anyone needing a new or retrofitted treatment system. They will provide them with a top-of-the line product as one would expect to receive from the Roman Goddess of the Sewers."

-Drew Woodruff, City of West Richland

For project videos, additional photos and more information, visit cloacina.com/westrichland

CLOACINA SUPPLIED THE FOLLOWING FOR THIS PROJECT:

LIFT STATION:

Package fiberglass duplex pump station which included: slide rails, pump bases, pumps, a level transducer, redundant floats, valve vault, isolation valves, aluminum lid and two locking hatches

HEADWORKS:

25,000 gallons of equalization storage, equalization pumps, influent flow meter, self-cleaning screen utilizing zero wash water, grit trap and automated pH adjustment system with sensor, pump and controls

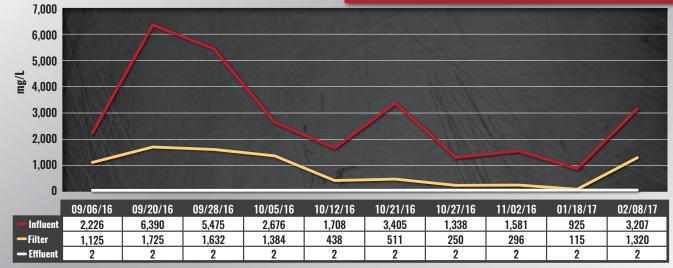
PRIMARY TREATMENT:

Roughing filter, fixed media, two-zone distribution header with auto valve, aeration header, auto aeration valves and aeration feed valve

SECONDARY TREATMENT:

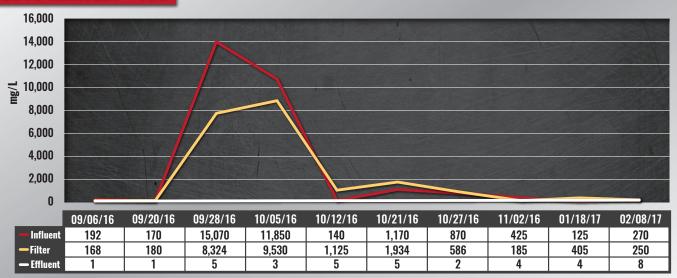
Fine bubble aeration diffusers, aeration blower, auto air valve, dissolved oxygen sensor and RAS pump

CLARIFICATION: Submerged flat sheet membranes, level transducer, air supply valve, permeate pump, permeate flow meter, CFM meter, online MLSS meter, clean-in-place pump, effluent pump, effluent flow meter, sludge wasting pump and two 25,000 gallon effluent equalization storage tanks

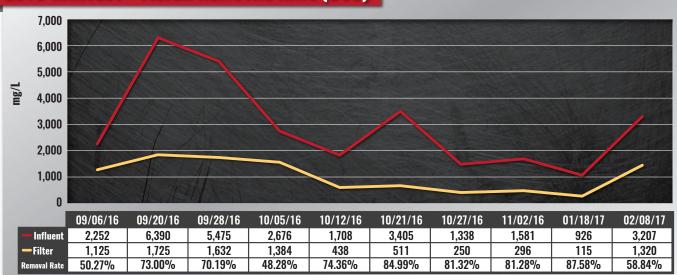

CONTROLS:

Stainless steel MCC panels, touch screen controls computer and controls program

ADDITIONAL:
Aluminum stairs and catwalks, self-cleaning system for pH, DO and MLSS probes, solids disposal: Cloacina DRYPAC System complete with 15 GPM volute dewatering press with 5,000 gallon aerated storage tank, polymer addition system and elevated platform for disposal into roll-off bin


2016 HARVEST - BOD

SAMPLE RESULTS: 2016 HARVEST


Graph illustrates Biochemical Oxygen Demand (BOD) reduction within the MEMPAC-I from system start-up through 2016 harvest

2016 HARVEST - TSS

Graph illustrates Total Suspended Solids (TSS) reduction by the MEMPAC-I from system start-up through 2016 harvest

2016 HARVEST - FILTER REMOVAL RATE (BOD)

Graph illustrates BOD removal performance by the MEMPAC-I from system start-up through 2016 harvest